Changes in Soil Carbon and Enzyme Activity As a Result of Different Long-Term Fertilization Regimes in a Greenhouse Field

نویسندگان

  • Lili Zhang
  • Wei Chen
  • Martin Burger
  • Lijie Yang
  • Ping Gong
  • Zhijie Wu
چکیده

In order to discover the advantages and disadvantages of different fertilization regimes and identify the best management practice of fertilization in greenhouse fields, soil enzyme activities involved in carbon (C) transformations, soil chemical characteristics, and crop yields were monitored after long-term (20-year) fertilization regimes, including no fertilizer (CK), 300 kg N ha-1 and 600 kg N ha-1 as urea (N1 and N2), 75 Mg ha-1 horse manure compost (M), and M with either 300 or 600 kg N ha-1 urea (MN1 and MN2). Compared with CK, fertilization increased crop yields by 31% (N2) to 69% (MN1). However, compared with CK, inorganic fertilization (especially N2) also caused soil acidification and salinization. In the N2 treatment, soil total organic carbon (TOC) decreased from 14.1±0.27 g kg-1 at the beginning of the long-term experiment in 1988 to 12.6±0.11 g kg-1 (P<0.05). Compared to CK, N1 and N2 exhibited higher soil α-galactosidase and β-galactosidase activities, but lower soil α-glucosidase and β-glucosidase activities (P<0.05), indicating that inorganic fertilization had different impacts on these C transformation enzymes. Compared with CK, the M, MN1 and MN2 treatments exhibited higher enzyme activities, soil TOC, total nitrogen, dissolved organic C, and microbial biomass C and N. The fertilization regime of the MN1 treatment was identified as optimal because it produced the highest yields and increased soil quality, ensuring sustainability. The results suggest that inorganic fertilizer alone, especially in high amounts, in greenhouse fields is detrimental to soil quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیر کاربری‌های مختلف اراضی بر تصاعد گازهای گلخانه‌ای

An increase in the emission of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil surface to the atmosphere has been of worldwide concern over the last several decades. Carbon dioxide is recognized as a significant contributor to global warming and climatic change, accounting for 60% of total greenhouse effect. The aim of this research was to dete...

متن کامل

Corn yield and yield stability under varying nutrient management, crop rotation, and rainfall

Long-term yield performance and yield stability of common cropping systems needs to be simultaneously assessed at various fertility regimes. Based on a consecutive 19-year field trial, including eight fertilization treatments with different combinations of nitrogen (N), phosphorus (P), potassium (K) and recycled manure (RM), the effects of fertilization and crop rotation on corn (Zea mays L.) y...

متن کامل

پتانسیل معدنی شدن نیتروژن خاک در اکوسیستم مرتعی تحت چرای آزاد و قرق دراز مدت در اقلیم‌های مختلف

Mountainous landscapes in Central Zagros are mainly used as grazing rangelands to feed animals and are heavily degraded. Overgrazing may impose a negative effect on rangeland productivity and sustainability through significant changes in soil properties. Soil nitrogen (N) mineralization is one of the key biological processes that might be affected by biotic and abiotic factors including range g...

متن کامل

Variations in eco-enzymatic stoichiometric and microbial characteristics in paddy soil as affected by long-term integrated organic-inorganic fertilization

To investigate the effects of different nutrient management regimes on the soil chemical, eco-enzymatic stoichiometric and microbial characteristics, soil samples were collected from a 30-year, long-term field experiment with six plots growing rice. The results showed that as integrated fertilization increased, so did the concentrations of soil total or available nutrients and microbial biomass...

متن کامل

The Effect of Land use and Soil Erosion on Soil Organic Carbon and Nitrogen Stock

  Soil organic carbon (SOC) is a principal component in soil quality assessment. Knowledge of SOC and total nitrogen (TN) stocks are important keys to understand the role of SOC in the global carbon cycle and, as a result, in the mitigation of global greenhouse effects. SOC and TN stocks are functions of the SOC concentration and the bulk density of the soil that are prone to changes, influe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015